Seeing is Believing
Direct Observation of the Wavefunction

Jeff Lundeen
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1. The wavefunction
revisited and
reviewed.

2. Progressin
understanding the
wavefunction

3. How we directly
measure the
wavefunction.




The Wavefunction ¥(r,t)
* In classical physics, a particle has a single position r and

momentum p.
» The Heisenberg uncertainty principle Ax Ap>h/2 implies that

this is not the case for a quantum particle.
* In quantum physics, a particle is associated a distribution of

positions and momenta — the wavefunction, ¥(r).

e.g. the Hydrogen *
Electron Orbitals 5




The Schrodinger Eq_uation
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The wavefunction ¥(r) is used to make probabilistic
predictions.
> e.g. Probability of finding a particle at r is [¥(r)[?
- The probability of anything measurable can be predicted from
the ¥(r) by the ‘Born Rule’ (e.g. energy, momentum, etc.)



The Schrodinger Equation
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 Along with the wavefunction, the Schrodinger Equation allows
us to predict how a system changes in time.



he Schrodinger Equation
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« Some predicted phenomena (e.g. tunneling) don’t happen in
classical physics



Weird things about the wavefunction:
1. Wave and Particle-like Behaviour

P(x) = [P(x)|]-e*® or |¥) = |slit 1) + e9|slit 2)
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* The wavefunction interferes just as though it were a
real wave (e.g. a water wave)
* Even a single particle has wave-like behaviour!




Weird things about the wavefunction:
2. Measurement

Consider an atom that decays and can emit
In all directions \7
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¥ ‘Collapses’ instantaneously to ¥, ., — Faster than light?
Non-deterministic, Probabilistic, not in the Schrodinger Eq.



Great minds argue about Quantum Physics
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Is ¥ a statistical probability distribution?
Consider rolling two dice:
Probability Distribution of Sum

=
o

Probability of Sum, Prob(S)
o
o1

2 3 4 5 6 7 8 9 10 11 12
Dice Sum, S

« Arollresults in a particular sum S, e.g. S=5, and distribution
collapses to Prob(5)=100%.
» Collapse is no longer weird, nonlocal, or unphysical



Is ¥ a statistical probability distribution?
Consider rolling two dice:

Angular

Position, X -
Momentum

* In any given dice roll, one can predict the dice sum.
» The underlying physics is deterministic
» Y is the result of ignorance of the exact state of the dice
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Bell’'s theorem is the most profound discovery of science
~ Henry Stapp (Particle Physicist, Berkeley)




Bell’s Theorem

Violation of the Bell inequality shows that nature
IS either (or both)

= Nonlocal: things can instantaneously affect
other far away things.

Not real: No fixed pre-existing properties that
determine the results of measurements.



Bell’s Theorem

Violation of the Bell inequality shows that nature
IS either (or both)

= Nonlocal: things can instantaneously affect
other far away things.

Not real: No fixed pre-existing properties that
determine the results of measurements.

Quantum entangled systems can violate the inequality:

iy

The spins are perfectly opposite in all directions:
[FY =111 - 1) = =) - [==)=["N)- NNE|7)1[?) 5

Entangled: No wavefunction for one particle by itself




Bell’s Theorem
Detectors are set to detect particles of certain direction

Consider four cases:

0 ver® 2170 [~G

1. Randomly set the detector directions
2. Do this outside the other detector’s light cone
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Bell’s Theorem
Detectors are set to detect particles of certain direction

Consider four cases:

0 ver® 2170 [~G

1. Randomly set the detector directions
2. Do this outside the other detector’s light cone

-y # 0
€. +$

Perfect correlations: e.g. even/odd digits of 3.14159265
Perfect randomness: e.g. flip a second coin for X or v/




Bell’s Theorem
Detectors are set to detect particles of certain direction

Consider four cases:

0 ver® 2170 [~G

1. Randomly set the detector directions
2. Do this outside the other detector’s light cone

I

|IC(a,b)-C(a,c)|<1+C(b,c)
Local realistic theories can produce either perfect
correlations or perfect randomness... but not both.

. The wavefunction is not locally real




Recent Progress in understanding ¥

Quantum State Cannot be Interpreted Statistically
Pusey, Barrett & Rudolph, Nature Physics, 2011.

Marginally different wavefunctions correspond to
completely distinct underlying statistical states.

if (P|P) # 1 then

No extension of quantum theory can have improved predictive power,
Colbeck & Renner, Nature Comm. 2011

Assuming the Born Rule Is correct, nature Is
sufficiently constrained by it to not leave room for
new or better experimental predictions.



What is the wavefunction?

[ The wave function does not describe a single system; it relates }

rather to many systems, to an ‘ensemble of systems.’

The wave function represents an
observer's knowledge of the system.

[ The state function is purely symbolic.

No-Cloning Theorem: one cannot copy a particle’s wavefunction
Corollary: It is impossible to determine an arbitrary
wavefunction of a single particle.



Simultaneous Measurement of x and p
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Lens, focal length = f

« Can easily measure Prob(x)=|¥(x)|* and then Prob(p)= |®(p)|?
« We don’t see the phase, i.e. the 0 in ¥=|¥|e"
 Measure x and we cause Ap—

» “Heisenberg Uncertainty Relation”
» Can not know x and p perfectly at the same time

Why not gently measure x and then strongly measure p?



Quantum Measurement

Strong Measurement

FuelMeter: E % % % F

“gtsl L \
\Pointer (P)

Hin=g PA §

System+bysteer=> c|a)|P;)

Gas Tank

Model both the
measured system and
the measurement
apparatus as guantum
systems.

e.g. The pointer needle
on a fuel gauge has a
wavefunction and so
does the gas tank.



Quantum Measurement

Strong Measurement

FuelMeter: E % % %

wtf\: ;\ Pointer
|nt__g PA§
Syste rﬁyﬁ’keimei]%ici |ap|Py

Average Value of A:

(WlANy)
Born Rule!

Gas Tank

Model both the
measured system and
the measurement
apparatus as guantum
systems.

e.g. The pointer needle
on a fuel gauge has a
wavefunction and so
does the gas tank.



Quantum Measurement

Strong Measurement Weak Measurement

E Ve wellis F
FuelMeter: E ¥ Y % F gt '

<gte A o /\/\
e : ¢ Pointer

H, =gPA :
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Gas Tank

System=3%2) System, |f1|f> = 2.Cilay)
Average Value of A: Average Value of A:

<\|,|/i|\|,> <W|A|\|/>



Quantum Measurement
Strong Measurement Weak Measurement

E Y% % % F
FuelMeter: E % % % F L S s

°e oo Pointer

H-::PA*

Gas Tank
buons

System—5|3/4> In the cases where result of B is b
Average Value of A: Average Value of A:
i <b|A|\|f>

Real part of A, is the position shift of the pointer
Imaginary part of A, is the momentum shift of the pointer



Strong Measurement Example

- Consider a strong measurement of position, e.g. [X){(X| =&

Rotates polarization
by 6 =90°

The photon was at x

f I. |
c 1 ¥(x)
S -@—P: ) : The photon was
< m— - not at x
D = Polarizing

beamsplitter

* The average result of a strong measurement:

() = {ylpe)x[ly) = [w(x)[* = Prob(x)
= the probability of finding the photon at position x



Weak Measurement Example
* For a weak measurement we reduce the rotation

of the polarization

Rotates polarization

Position
———p X

|
m—> Y(X) '
O T The photon was
not at x

Polarizing
beamsplitter



Weak Measurement Example
 For a weak measurement we reduce the rotation of the

polarization

Rotates polarization

|
m—> Y(X) '
O T The photon was
not at x

Polarizing
beamsplitter

 From a single run, we get little information — the result
IS random



Weak Measurement Example

* The average result of the weak measurement is the final
rotation of our pointer: the linear polarization.

Rotates polarization
by 6 << 1

Position

Rotation of linear
polarization

(\N-/) = Re(A) = y&)P

* The average result of the weak measurement is the same
as a standard (‘strong’) one:
(Aw) = Re(Ay)= (ybe)x]ly) = [w(x)]> = Prob(x)




Weak then Strong Measurement

* What if we do a weak measurement of x, and then make
a strong measurement of p? Imbalance in circular

polarizationsi(y O - (») = Im(A,)

o 0 O

(\\-/")=Re(A)

tocal lenath=f _ Rotation of linear
Lens, focal length= Pinhole polarization

 Real and Imaginary parts of the weak measurement average
appear in the linear and circular polarization rotations.



The iIdea

 What iIf we do a weak measurement of X, and then make a
strong measurement of P?

l.e. A = |xX){X|=m, Initial state= |y), Strong measurement result P=p

Average shiftof ~ , :<b|A|\V>
the pointer: W™ <bly>
= (PPXXXy)
(Ply)
. 127 (X
And if p=0, = \/Prob(p:O) =| k-y(X)

* The average shift of the pointer (i.e. rotation of the
polarization) is proportional to the wavefunction



Direct Measurement of the Wavefunction

*Weakly measure |x){x| then strongly measure p, and keep only
the photons found with p=0 .

Imbalance in circular () - (») = Im¥(x)

polarizations (\j
f f /LHC\

i)

o 0 O

(N\N-/) = Re¥(x)
Rotation of linear
polarization

* The average result of the weak measurement is the
real and imaginary components of the wavefunction

Lens, focal length=f Pinhole



Our Source of Single Photons
« A pump photon is spontaneously converted into two lower
frequency photons in a nonlinear optical material

Pump
pulse Nonlinear
crystal
\%v N Heralding
7 detector

Polarising \%\

beamsplitter
; Single photon

* Photons are produced rarely but always in pairs
— Detection of one photon ‘Heralds’ the presence of its twin






Direct Measurement of the Wavefunction

Probability amplitude, ¥(x) (

}
Probability d

%ﬁg imiyL X

20 0 20
Position, x (mm)

0.01

£ %, WP

‘ .Prob(x)

20 0 20

Position, x (mm)



Testing another wavefunction shape

» Created new transverse e+ Phase Discontinuity:

wavefunction with a Placed a glass square
reverse bullseye filter across half the wavefunction
J v Dl
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Testing other wavefunctions phase profiles

Phase Gradient

Phase Curvature

D
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Why it Is Direct
1.1t is local - measures y(x) at x

2.No complicated mathematical
reconstruction

3. The value of y(x) appears right
ONn our measurement apparatus

4. The procedure is simple and
general - measure x and then p




. Test Particles (i.e. m—0, b—>0) helped establish the
existence of Electric and Magnetic Fields.
* Test measurement (I.e. weak measurement) might be

similarly useful. y
1) 0 WU 02 SNAE A8 N A R ——e——————




An operational definition of the wavefunction

 Currently there is no definition of the wavefunction.

* Clarity can come from “Operational” definitions of
physical concepts.

*|.e. the set of operations used in the lab to
observe something.
Bridgman, P. The Logic of Modern Physics (1927).

“The wavefunction Is the average result of a weak
measurement of a variable followed by a strong
measurement of the complementary variable”



Charles Bamber
(NRC)
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Conclusion

« Even though it may seem like a philosophical question,
there has been progress (and more can be made!)

* The math is simple — undergraduates are probably asking
the right questions (remember them!)

* |dea behind direct wavefunction measurement is universal

« e.g. frequency-time photon wavefunction, electron spin state,
entangled multiparticle states, etc.

Willis Lamb (Nobel Laureate). After
writing ¥ on the blackboard, said to
his class at Columbia:

Don’t worry about what
this means, you’ll get
used to it.




Recruiting undergrads, graduate students
and post-docs
www.photonicquantum.info for moreinie
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